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1. INTRODUCTION

We have found several generalizations of ideals of a lattice to arbitrarily par-
tially ordered set (poset) in a literature which has been studied by different authors.
Closed ideals or normal ideals of a poset were introduced by Birkhoff [2], who gives
credit to Stone[15] for the case of Boolean algebras. Next, in 1954 the second type
of ideal of a poset called Frink ideal has been introduced by Frink [6]. Following this
Venkatanarasimhan developed the theory of semi-ideals and ideals for posets [17]
and [18], in 1970. These ideals are called ideals in the sense of Venkataranasimhan
or V-ideals for short. Next, the concept of ideals of a poset have been suggested
by Erné [4] in 1979 which are called m-ideal. This ideal generalize almost all ideals
of a poset suggested by different authors. Latter, Halas$ [9], in 1994, introduced a
new ideal of a poset which which seems to be a suitable generalization of the usual
concept of ideal in a lattice. we will simply call ideal in the sense of Halas.

On the other hand, the notion of fuzzy ideals of a lattice has been studied by
different authors in series of papers [1, 14, 16, 19].

In this paper we introduce several generalizations of fuzzy ideals of a lattice to
an arbitrary poset whose truth values are in a complete lattice satisfying the infinite
meet distributive law and give several characterizations of them. We also prove
that the set of all L-fuzzy ideals of a poset forms a complete lattice with respect
to point-wise ordering. Throughout this work L stands for a non-trivial complete
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lattice satisfying the infinite meet distributive law: a Asup S = sup{a As:s € S},
for any a € L and for any subset S of L.

2. PRELIMINARIES

We briefly recall certain necessary concepts, terminologies and notations from
2, 3, 5]

A binary relation ” <7 on a set @ is called a partial order, if it is reflexive, anti-
symmetric and transitive. A pair (@, <) is called a partially ordered set or simply
a poset, if @) is a non-empty set and < is a partial order on ). When confusion is
unlikely, we use simply the symbol @ to denote a poset (@, <).

Let @ be a poset and A C Q. Then the set A* = {x € Q : x > aVa € A} is called
the upper cone of A and the set A' = {x € Q : z < a Va € A} of A is called the lower
cone of A. A" shall mean {A“}' and A" shall mean {A'}". Let a,b € Q. Then
the upper cone {a}" is simply denoted by a* and the upper cone {a,b}" is denoted
by (a,b)". Similar notations are used for lower cones. We note that A C A" and
AC A% and if A C B in Q, then Al D B! and A* D B*. Moreover, Alvt = Al
Aulu — Au , {au}l — al and {al}u = aq¥.

An element g in @ is called the least upper bound of A or supremum of A, denoted
by supA (receptively, the greatest lower bound of A or infimum of A, denoted by
infA), if zo € A* and xy < =, for each € A" (respectively, if zo € A' and z < 2,
for each x € Al).

An element z( in @ is called the largest (respectively, the smallest) element, if
x < xg (respectively, zg < x), for all € Q). The largest (respectively, the smallest)
element, if it exists in @, is denoted by 1 (respectively, by 0).

A poset (Q <) is called bounded, if it has 0 and 1. Note that if A = &, we have
AY = (g*)! = Q' which is either empty or consists of the least element 0 of @ alone,
if it exists.

R

Now we recall definitions of ideals of a poset that are introduced by different
scholars.

Definition 2.1. (i) [2] A subset I of a poset @ is called a closed or normal ideal of
Q, if 1" C I (or equivalently, I*! = I, since I C I*).

(ii)[6] A subset I of a poset @ is called a Frink ideal in Q if F*! C I, whenever F
is a finite subset of I. ,

(iii) [17] A non-empty subset I of a poset @ is called a semi-ideal or an order ideal
of Q,if a < band b € I implies a € I.
(iv) [18] A subset I of a poset @ is called a V-ideal or an ideal in the sense of

Venkatannarasimhan, if I is a semi-ideal and for any non-empty subset A C I , if
sup A exists, then sup A € I.

(v) [9] A subset I of a poset @ is called an ideal in @ in the sense of Halas, if
(a,b)" C I, whenever a,b € I

Note that every ideal of a poset @ contains Q'. The following definition generalize
all the definitions of ideal given above.
2
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Definition 2.2 ([1]). Let @ be a poset and m denote any cardinal number. Then a
subset I of a poset @ is called an m-ideal in @, if for any subset A of I of cardinality
strictly less than m, written as A C,,, I, we have A% C I.

Remark 2.3 ([5]). The following special cases are included in this general definition:

(1) 2-ideals are semi-ideals containing Q'.

(2) 3-ideals are ideals in the sense of Halaé containing Q'.

(3) w-ideals are Frinkideals containing Q' where w the least infinite cardinal
number.

(4) Q-ideals are closed ideals, where the symbol ©Q mean if I has cardinality
then Q is a cardinal greater than k.

(5) V-ideals are 2-ideals which are closed under finite supremum and containing

Q.
Remark 2.4. The following remarks are due to Halas and Rachunek [11].

(1) if @ is a lattice then a non-empty subset I of @ is an ideal as a poset if and
only if it is an ideal as a lattice.

(2) if a poset @ does not have the least element then the empty subset & is an
ideal in Q (since @ = (g")! = Q' = ).

Definition 2.5. Let A be any subset of a poset ). Then the smallest ideal contain-
ing A is called an ideal generated by A and is denoted by (A]. The ideal generated
by a singleton set A = {a}, is called principal ideal and is denoted by (a].

Note that for any subset A of Q if sup A exists then A" = (sup AJ.

The followings are some characterizations of ideals generated by a subset A of a
poset Q. We write FF CC A to mean F' is a finite subset of A.

(1) (Alc = U{B™ : B C A} is the closed ideal or normal ideal generated by A
where the union is taken overall subsets B of A.

(2) (A]r = U{F" : F cC A} is the Frink ideal generated by A, where the
union is taken overall finite subsets F' of A

(3) Define C; = U{(a,b)* : a,b € A} and C,, = J{(a,b)" : a,b € C,,_1} for
each positive integer n > 2, inductively. Then (Alg = J{C, : n € N} is
the ideal generated by A in the sense of Halad, where A denotes the set of
positive integers.

(4) if a € Q then (a] = {x € Q : x < a} = d! is the principal ideal generated by
a.

Lemma 2.6 ([10]). Let Z(Q) be the set of all ideals of a poset Q in the sense of
Halas and I,J € Z(Q). Then the supremum IV J of I and J in Z(Q) is:

IvJ=|J{Cn:neN},

where Cy = J{(a,b)" : a,b € TUJ} and C,, = |J{(a,b)" : a,b € C,_1}, for each
positive integer n > 2.

Definition 2.7 ([9]). An ideal I of a poset Q is called a u-ideal, if (z,y)* N1 # &,
for all z,y € I.
3
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Note that an easy induction shows I is a u-ideal, if F* NI # @, for any finite
subset F of I.

Theorem 2.8 ([9]). Let Z(Q) be the set of all ideals of Q in the sense of Halas and
I, J be u-ideals of a poset Q. Then the supremum IV J of I and J in Z(Q) is:

IvJ=J{(ab)":aclbe I}

Definition 2.9 ([7]). Let X be a non-empty set. An L-fuzzy subset pu of X is a
mapping from X into L, where L is a complete lattice satisfying the infinite meet
distributive law.

Note that if L is a unit interval of real numbers, then p is the usual fuzzy subset
of X originally introduced by Zadeh [20].

Definition 2.10 ([16]). Let u be an L-fuzzy subset of X. Then for each « € L, the
set o = {z : p(x) > a} is called the level subset of p at «.

Lemma 2.11 ([12]). Let pu be an L- fuzzy subset of a poset Q. Then p(x) = sup{a €
L:x € pa}, foralzeq.

Definition 2.12 ([7]). Let L be a complete lattice satisfying the infinite meet dis-
tributivity and X be a non-empty set. For any L-fuzzy subsets p and o, define
u C o if and only p(z) < o(x), for all z € X.

It can be easily verified that C is a partial order on the set LX of L- fuzzy subsets
of X and is called the point wise ordering.

Definition 2.13 ([13]). Let p and o be an L-fuzzy subsets a non-empty set X. The
union of fuzzy subsets p and o of X, denoted by pUo, is a fuzzy subset of X defined
by: for all x € X,

(nU o)) = ulx) V olx)
and the intersection of fuzzy subsets p and o of X, denoted by p N o, is a fuzzy
subset of X defined by: for all z € X,

(nno)(x) = p(x) AN o(x).

More generally, the union and intersection of any family {y;};ea of L-fuzzy sub-
sets of X, denoted by (J;ca ts and ();c 4 is respectively, are defined by:

(l I pi)(x) = sup p;(x) and ( pi)(z = inf p;(x),
€A €A i€A iea
for all x € X, respectively.

Definition 2.14 ([16]). An L-fuzzy subset p of a lattice X with 0 is said to be an
L -fuzzy ideal of X, if u(0) =1 and p(a V b) = pu(a) A u(b), for all a,b € X.

Definition 2.15. Let p be an L- fuzzy subset of a lattice X. The smallest fuzzy
ideal of X containing p is called a fuzzy ideal generated by p and is denoted by (u].

Lemma 2.16. Let FZ(Q) be the set of all L-fuzzy ideals of a lattice X and p be an
L fuzzy subset of X. Then (u] = ({0 € FZ(Q) : p C 6}.
4
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3. L-FUZZY IDEALS OF A POSET

In this section, we introduce several notions of L-fuzzy ideals of a poset and give
several characterizations of them. Throughout this paper @ stands for a poset (Q <)
with 0 unless otherwise stated.

We shall begin with the following definition.

Definition 3.1. An L- fuzzy subset p of @ is called an L- fuzzy closed ideal, if it
satisfies the following conditions:

(i) u(0) = 1,

(ii) for any subset A of Q, u(x) > inf{u(a): a € A} Vo € A™.

Lemma 3.2. A subset I of Q is a closed ideal of Q if and only if its characteristic
map X1 18 a closed L-fuzzy ideal of Q.

Proof. Suppose I is a closed ideal of Q. Since 0 € I* C I, we have x7(0) = 1. Let
A be any subset of Q and z € A%

If AC I, then we have z € A% C [*! C I. Thus x;(x) = 1 = inf{xs(a) : a € A}.

If A ¢ I, then there is b € A such that b ¢ I. Thus x;(b) = 0. This implies
inf{xs(a) : @ € A} = 0. So x7(x) > 0 = inf{x;(a) : a € A}, for all x in A*. Hence
for any A C Q, we have x7(z) > inf{x;(a) : a € A}, for all x € A%, Therefore y; is
a fuzzy closed ideal of Q.

Conversely, suppose x7 is a fuzzy closed ideal. Since x;(0) = 1, we have 0 € I, i.e.,
{0} = Q" C I. Let x € I"'. Then by hypotheses, x;(z) > inf{xs(a) : a € I} = 1.
This implies x7(z) = 1. Thus # € I. So I** C I. Hence I is a closed ideal. This
proves the result. O

The following result Characterize the L- fuzzy closed ideal of @ in terms of its
level subsets.

Lemma 3.3. An L- fuzzy subset  of Q is an L- fuzzy closed ideal of Q if and only
if o s a closed ideal of Q, for all o € L.

Proof. Let u be an L- fuzzy closed ideal of @ and o € L. Then u(0) = 1 > «. Thus
0 € pq, ie., {0} = Q' C po. Again let € (uq)". Then u(z) > inf{u(a) : a €
ta} > a. Then = € po Thus (pa)™ C fia. SO fiq is a closed ideal.

Conversely, suppose that p, is a closed ideal of @, for all & € L. In particular,
1 is a closed ideal. Since {0} = Q' C (u1)* C g, we have 0 € 1. Then p(0) = 1.
Again let A be any subset of Q. Put o = inf{u(a) : a € A}. Then p(a) > a,
Va € A. Thus A C p,. This implies A% C p% C p,. Since v € A%, 2 € p,. So
w(xz) > a=inf{pu(a) : a € A}. Hence p is an L-fuzzy closed ideal of ). This proves
the result. d

Corollary 3.4. Let u be a fuzzy closed ideal of a poset Q. Then u is anti-tone in
the sense that p(x) > p(y), whenever x < y.

Proof. Let x,y € @ such that  <y. Put u(y) = o . Since p a fuzzy closed ideal,

we have fi, is a closed ideal of Q, i.e., (1ta)" C pa. Since u(y) = @, y € pg. Then

v ={y}" C (pa)" C o Thus 2 <y =z € y' = 2 € po. So p(z) > o = p(y).

This proves the result. O
5
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Lemma 3.5. The intersection of any family of fuzzy closed ideals is a fuzzy closed
ideal.

Theorem 3.6. Let (A]c be a closed ideal generated subset A of Q and xa be its
characteristics functions. Then (xa] = X(ac-

Proof. Since (A]c is a closed ideal of @ containing A, by Lemma 3.2, we have x (4.
is a fuzzy closed ideal. Since A C (4], we have xa C x(4],. We remain to show
that it is the smallest fuzzy closed ideal containing x 4. Let p be any L-fuzzy closed
ideal such that x4 C p. Then p(a) =1, for all @ € A. Now we claim x4} C p. Let
z € Q. If v ¢ (A], then x(4)(z) =0 < p(z). If 2 € (A]¢, then z € B*, for some
subset B of A. Thus pu(z) > inf{u(b) : b € B} =1 = x(4). (). So x(4)c(7) < pu(z),
for all x € Q). Hence the claim holds. This completes the proof. O

In the following theorem we characterize the fuzzy closed ideal generated by a
fuzzy subset of @ in terms of its level ideals.

Theorem 3.7. Let p be an L-fuzzy subset of Q. Then the L-fuzzy subset fi of Q
defined by fi(z) = sup{a € L : x € (ua]c}, for all x € Q is a fuzzy closed ideal of Q
generated by .

Proof. We show (i is the smallest fuzzy closed ideal containing . Let z € @ and
put u(z) = 8. Then = € pg C (uglc. Thus B e {a € L:x € (ta]c}. So
u() = B <supla € Liw € (nale} = ile).
Hence i C fi.
Again since 0 € Q' C (11a]c, for all a € L, we have j1(0) = 1. Let A be any subset
of @ and z € A*. On the other hand,
inf{ji(a) : a € A} = inf{sup{a, : ¢ € (pta,]c} 1 a € A}
= sup{inf{a, :a € A} : a € (ua,]c}-
Put A = inf{a, : a € A}. Then X < a, for all a € A. Thus (fta,]c € (ur]c, Va € A.
So A C (ux]c and thus # € A% C ((ur]c)™ C (ur]o. Hence

inf{fi(a) :a € A} = sup{inf{a,:a€ A}:a€ (pa,lc}
< sup{A e L:z € (urlc}
-

Therefore fi is a Fuzzy closed ideal.

Again let 6 be any fuzzy closed ideal of @ such that p C 6. Then p, C 6,. Thus
(ta)]c € (u]c = 4. So for any = € Q, fi(x) =sup{a € L : z € (uo]c} < sup{a €
L:ze€0,} =06(x). Hence i C 6. This proves that i is the smallest fuzzy closed
ideal containing p. Therefore i = (u]. O

In the following we give an algebraic characterization of L-fuzzy Closed ideal
generated by a fuzzy subset of Q.

Theorem 3.8. Let p be a fuzzy subset of Q. Then the fuzzy subset i defined by
_ 1 ifr=0
a(x) = . , i
sup{inf,ca p(a) : AC Qand z € A™} ifx#0

is a fuzzy closed ideal of QQ generated by .
6
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Proof. Tt is enough to show that @ = fi, where [ is a fuzzy subset defined in the
above theorem. Let z € Q. If 2 = 0, then f(x) =1 = ji(x). Let z # 0. Put

A, = {irelgu(a) ACQand x€ A"} and B, = {a: = € (ua]c}

Now we show sup A, = supB,. Let o € A,. Then a = inf,c4 p(a), for some
subset A of Q such that » € A", This implies that a < yu(a), for all @ € A. Thus
A C g C (pa]c- Since (pa]c is a closed ideal, we have A% C ((11a]c)™ C (talc-
So x € (lq), i-e., a € B,. Hence A, C B,. Therefore sup A, < sup B,.

Again let @ € B,. Then = € (a]c. Since (pale = U{AY : A € palt, we
have © € A" for some subset A of y,. This implies p(a) > «, for all a € A.
Thus inf{p(a) : a € A} > «. Put g = inf{u(a) : a € A}. Then g € A,. Thus
for each o € B,, we get § € A, such that a < . So sup A, > sup B,. Hence
sup A, = sup B, and thus 71 = fi. Therefore @ = (u). O

The above result yields the following.

Theorem 3.9. The set FCZ(Q) of all L-fuzzy closed ideals of @ forms a complete
lattice, in which the supremum sup;cap; and the inifimum inf;ca p; of any family
{pi : 1 € A} of L-fuzzy closed ideals of Q respectively are given by:

(supieapi)()

= (Umw =14 .
B iEAMz = sup{infoea(U;cn pi)(a) : AC Q and z € A} ifz #0
and (infien pi)(x) = (Nien e)(x), for all z € Q.

Corollary 3.10. For any p and 0 in FCZ(Q), the supremum V6 and the infimum
w0 of uand 0 ,respectively are:

(nVO)(x)

o 1 ifr=0
oot = {Sup{infaeA(MUe)(a) tACQand x € A"} ifr #0

and (A 6)(x) = (pNO)(x), for all x € Q.

Now we introduce the fuzzy version of the ideals of a poset introduced by Frink

[6]-

Definition 3.11. An L- fuzzy subset u of @ is called an L- fuzzy Firink ideal, if it
satisfies the following conditions:

(i) #(0) = 1,

(ii) for any finite subset F' of Q, u(z) > inf{u(a) : a € F} Vo € F.

Lemma 3.12. An L- fuzzy subset u of Q is an L- fuzzy Frink ideal of Q if and only
if e s a Frink ideal of Q, for all « € L.

Corollary 3.13. A subset I of Q is a Frink ideal of Q if and only if its characteristic
map X1 18 an L-fuzzy Frink ideal of Q.

Lemma 3.14. The intersection of any family of fuzzy Frink-ideals is a Fuzzy frink-
ideal.
7
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Theorem 3.15. Let (A]r be a Frink-ideal generated subset A of Q and xa be its
characteristics functions. Then (xa] = X(a]p-

In the following theorems we give characterizations of fuzzy Frink ideals generated
by a fuzzy subset of Q.

Theorem 3.16. For any fuzzy subset p of Q, define a fuzzy subset i of Q by
f(x) =sup{a € L : x € (ua]r}, for allx € Q. Then [i is a Frink fuzzy ideal of Q
generated by .

In the following we give an algebraic characterization of fuzzy ideals generated by
fuzzy sets. We write F' CC @ to mean that F' a finite subset of Q.

Theorem 3.17. Let p be a fuzzy subset of Q. Then the fuzzy subset i defined by:
_ 1 ifr=0
) = {sup{infaep wla): FCcC Qand x € FU} ifr #0
is a Frink fuzzy ideal of Q generated by p.
The above result yields the following.

Theorem 3.18. The set FFL(Q) of all L-fuzzy Frink ideal of Q forms a complete
lattice, in which the supremum sup;cap; and the inifimum inf;ca p; of any family
{pi : 1 € A} of L-fuzzy Frink ideals of Q are given by:

sup p; = wi and inf u; = 14

ea iEJA iea z‘DA

Corollary 3.19. For any u and 6 in FFI(Q), the supremum uV 0 and the infimum
A0 of uand 0, respectively are:

uVO=pUJband uANf=puné.

Now we introduce the fuzzy version of semi-ideals and V-ideals of a poset intro-
duced by Venkatanarasimhan [17, 18].

Definition 3.20. An L- fuzzy subset u of @ is called an L- fuzzy semi-ideal or
L-fuzzy order ideal, if p(z) > p(y), whenever z < y in Q.

Definition 3.21. An L- fuzzy subset u of @ is called an L- fuzzy V-ideal, if it
satisfies the following conditions:

(i) u(0) = 1,

(ii) for any x,y € Q, p(z) > u(y), whenever x < y,

(iii) for any non-empty finite subset F' of @, if sup F' exists, then

u(sup F') > inf{p(a) : a € F}.
Theorem 3.22. FEvery L-fuzzy Frink ideal is an L-fuzzy V -ideal.

Proof. Let pis an L-fuzzy Frink ideal and let ,y € @ such that x < y. Put p(y) =
Since p an L-fuzzy Frink ideal, we have u, is a Frink ideal of Q. Since u(y) =
Y € pia- Then {y} C po. Thus {y}* C pg. Since v <y, x € y' = y* C py. So

w(x) > o= pu(y).
8
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Again let F' be any nonempty subset of @) such that sup F' exists in ). Then
F" = (sup A]. Thus sup F € F“ and p(sup F) > inf{u(a) : @ € F}. So p is an
L-fuzzy V-ideal. U

Now we introduce the fuzzy version ideals of a poset introduced by Halas [9]
which seems to be a suitable generalization of the usual concept of L-fuzzy ideal of
a lattice.

Definition 3.23. An L- fuzzy subset p of @ is called an L- fuzzy ideal in the sense
of Hala$, if it satisfies the following conditions:

(i) (0) = 1,

(i) for any a,b € Q , u(z) > p(a) A p(b), for all = € (a,b)™.

In the rest of this paper, an L- fuzzy ideal of a poset will mean an L-fuzzy ideal
in the sense of Hala$ given in the above definition.

Lemma 3.24. An L- fuzzy subset p of Q is an L- fuzzy ideal of Q if and only if pq
is an ideal of Q in the sense of Halas, for all o € L.

Corollary 3.25. A subset I of Q is an ideal of Q in the sense of Hala$ if and only
if its characteristic map Xy is an L-fuzzy ideal of Q.

Lemma 3.26. If p is an L- fuzzy ideal of Q, then the following assertions hold:

(1) for any @,y € Q. u(z) > u(y), whenever = <y,
(2) for any x,y € Q, u(x Vy) > u@) A u(y), whenever xV y exists.

Theorem 3.27. Let (Q,<) be a lattice. Then an L-fuzzy subset u of Q is an L-
fuzzy ideal in the poset Q if and only it an L-fuzzy ideal in the lattice Q.

Proof. Let p be an L-fuzzy ideal in the poset @ and a,b € Q. Then p(0) = 1. Since
aVbe (aVvb = (a,b)*, we have u(a vV b) > p(a) A u(b). Since u is anti-tone,
we have p(a) > p(a VvV b) and u(b) > wp(a Vv b). Thus u(a) A uw(d) > pla Vv b). So
w(a Vv b) = p(a) A p(b). Hence p is an L-fuzzy ideal in the lattice Q.

Conversely, suppose p is an L-fuzzy ideal in the lattice Q). Let a,b € @ and
z € (a,b)". Then z <y, for all y € (a,b)". Since a Vb € (a,b)", we have x < a V b.
Thus p(z) > p(aVd) = p(a) A p(b). So p is an L-fuzzy ideal in the poset Q. This
completes the proof. O

Lemma 3.28. The intersection of any family of L-fuzzy ideals is an L- fuzzy deal.

Theorem 3.29. Let (A]lgy be an ideal generated subset A of Q in the sense of Halas
and x4 be its characteristics functions. Then (xa] = X (] -

Definition 3.30. Let u be a fuzzy subset of Q and A be a set of positive integers.
Define a fuzzy subset Cf' of Q by C4'(z) = sup{u(a) A u(b) : x € (a,b)"'}, ¥V z € Q.
Inductively, let C%, (z) = sup{C¥(a) A C¥(b) : = € (a,b)"'}, for each n € N.

Now we give a characterization of an L-fuzzy ideal generated by a fuzzy subset
of a poset Q.

Theorem 3.31. The set {C¥ :n € N} form a chain and the fuzzy subset i defined
by: for all z € Q,
i(z) = sup{Cl(z) i n € N}
is a fuzzy ideal generated by L.
9
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Proof. Let x € Q and n € . Then
Chi(x) = sup{CH(a) NCH(): x € (a, by
> CHMx) ACH(x) (since z € z' = (z,2)")
= CHz),Vzeq.

Thus Ck C Cl ., for each n € N. So {C} : n € N'} is a chain.
Now we show /i is the smallest fuzzy ideal containing p. Since

i(e) = sup{Cl(z):ne N}

Cr' ()

sup{p(a) A p(b) = z € (a,b)"'}
w(x) A p(z) (since x € (z,z)™)
wz), Vzeq,

we have y C fi. Let a,b € L and z € (a,b)*!. Then

V

v

v

f(z) = sup{CH(z):n e N}
> CH(z) forallmeN
= sup{C* [(y) ANC*_,(2):x € (y,2)"} foralln >2.
> C*_(a) ANC*_(b) Vn > 2 (since x € (a,b)")
= CHl(a)ANCE(b), VmeN.
Thus
i) > sup{Cli(a) ACL(b) - m e A}

= sup{C¥%(a) : m € N} Asup{Ck,(b) : m € N'}
— ia) A ).
So fi is a fuzzy ideal.

Again let 0 be any fuzzy ideal of @ such that p C 6. Now let a,b € @ and
x € (a,b)". Then 0(z) > 6(a) A O(b) > p(a) A p(b). This implies

() > sup{u(a) A u(d) : x € (a,b)"'} = C¥(x), Yz € (a,b)".
Again for any z € (a,b)", we have 6(x) > 6(a) AO(b) > Ct'(a) ACY (b). This implies
() > sup{C¥(a) A CH(b) : x € (a,b)"} = C¥ (z).
Thus by induction, we have 6(z) > C#(x) Vn € N and V = € (a,b)*.. So for any
reQ,
i(z) = sup{Cf(x):neN}
= sup{C#(a) ACH(b) : z € (a,b)"}

< sup{f(a) AO(b) : z € (a,b)"} (since, a,b € (a,b)*.)
< O(x).
Hence i1 C 6. This completes the proof. O

The above result yields the following.
10
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Theorem 3.32. The set FZ(Q) of all L-fuzzy ideal of Q forms a complete lattice, in
which the supremum sup;capt; and the inifimum inf;ea p; of any family {p; 1 i € A}
in FZ(Q) respectively are: for all x € Q,

(supicas)(z) = sup{CY<" (@) - n € N} and (inf u)(w) = ([ j)(2):
[ISYAN
Corollary 3.33. For any p and 0 € FZ(Q) the supremum p VN 6 and the infimum
A0 of uand 0 respectively are: for all x € Q,
(Vv 0)(x) = sup{CL (x) : n € N} and (uA0)(x) = (N 6)(x).
Theorem 3.34. The following implications hold, where none of them is an equiva-
lence:

(1) L- fuzzy closed ideal = L-fuzzy Frink ideal = L-fuzzy V -ideal => L-fuzzy
semi-ideal,

(2) L- fuzzy closed ideal = L-fuzzy Frink ideal = L-fuzzy ideal = L- fuzzy
semi-ideal.

The following examples show that the converse of the above implications do not
hold in general.

Example 3.35. Consider the Poset ([0, 1], <) with the usual ordering. Define a
fuzzy subset p : [0,1] — [0, 1] by:

1 ifrelo,3)
,u(x) = . 1 2
0 ifrecls,1]
Then p is L-fuzzy Frink ideal but not L- fuzzy closed ideal.

Example 3.36. Consider the poset (@, <) depicted in the figure below. Define a
fuzzy subset p: @ — [0,1] by: u(0) = p(a) =1, p(a’) = p(¥') = p(c') = p(d') =
w(l) =0.2, u(b) = 0.6, u(c) = 0.5 and p(d) = 0.7.

1

Figure 1
Then p is L-fuzzy ideal but not L-fuzzy Frink-ideal.

Example 3.37. Consider the poset (@, <) depicted in the figure below. Define a
fuzzy subset p: Q — [0,1] by: ©(0) =1, p(a) = u(b) = 0.8 and pu(c) = 0.6.
11
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a b ¢
Q O P
U/
0 Figure 2

Then p is L-fuzzy V-ideal but not L-fuzzy Frink-ideal.

Example 3.38. Consider the poset (@, <) depicted in the figure below. Define
a fuzzy subset p : Q@ — [0,1] by: p(0) = pla) = 1, p(d) = 0.8, u(c) = 0.9,
w(d) = u(e) = 0.2 and p(1) =0.

a

0
Figure 3

Then p is L-fuzzy semi-ideal but not L-fuzzy ideal.
Theorem 3.39. Let x € QQ and o € L. Define an L- fuzzy subset ay of Q by

N _ 1 ifye (]
=) {a if y ¢ (al,

forally € Q. Then oy is an L-fuzzy ideal of Q.

Proof. By the definition of a,, we clearly have a,(0) = 1. Let a,b € Q and y €
(a,b)™.

If a,b € (z], then (a,b)" C (z] and a,(a) = a,(b) = 1. Thus a,(y) =1=1A1=
agz(a) A ag(b).

If a ¢ (x] or b ¢ (z], then a,(a) = a or ay(b) = a. Thus

az(y) > a = ag(a) A ag(b).

So in either cases, we have a,(y) > a.(a) A a,(b), for all y € (a,b)". Hence o is
an L-fuzzy ideal. O

Definition 3.40. The L-fuzzy ideal o, defined above is called the a-level principal
fuzzy ideal corresponding to x.

Definition 3.41. An L-fuzzy ideal u of a poset @ is called a u-L-fuzzy ideal, if for
any a,b € @Q, there exists € (a,b)" such that u(z) = u(a) A p(b).
12
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Note that this property is immediately extends from {a,b} to any finite subset
of Q. That is, if u is a u-L-fuzzy ideal then there exists € F™ such that p(x) =

(@) A p(b).

Lemma 3.42. An L- fuzzy ideal i of Q is a u-L-fuzzy ideal of Q if and only if pg
is a u-ideal of Q, for all a € L.

Proof. Suppose u is a u-L-fuzzy ideal and o € L. Since p is an L- fuzzy ideal, u, is
an ideal of Q. Let a,b € puy. Then p(a) > « and p(b) > «. Thus p(a) A p(b) > «.
Since p is a u- L- fuzzy ideal, there exists = € (a,b)" such that p(z) = p(a) A p(b).
So p(x) > o. Hence x € po N (a,b)” and thus pe N (a,b)* # @. Therefore p, is a u-
L- fuzzy ideal of a poset Q.

Conversely, suppose p, is a u- ideal of a poset @, for all &« € L. Then p is an
L- fuzzy ideal. Let a,b € @ and put a = p(a) A u(b). Then p, N (a,b)* # &. Let
T € o N (a,b)*. Then x € u, and z € (a,b)*. This implies p(x) > a = p(a) A p(b)
and a < x,b < z. Since u is anti-tone, we have p(a) > p(x) and p(b) > p(x). Thus
pla) A p(b) > p(x). So there exists x € (a,b)" such that u(z) = p(a) A u(b). Hence
u is a u-L-fuzzy ideal. O

Corollary 3.43. Let (Q, <) be a poset with 1 and let x € Q and o € L. Then the
a-level principal fuzzy ideal corresponding to x is a u-L-fuzzy ideal.

Remark 3.44. Every L-fuzzy ideal is not a u-L-fuzzy ideal. For example consider
the poset (Q <) depicted in the figure below and define a fuzzy subset p : @ — [0, 1]
and of Q by p(0) =1, p(a) = pu(b) = 0.9, u(c) = pu(d) = p(1) = 0.7. Then u is an
L-fuzzy ideal but not a u- L-fuzzy ideal.

1

0 Figure 4
Theorem 3.45. Every u- L-fuzzy ideal is an L- fuzzy Frink ideal.

Proof. suppose p is a u- L-fuzzy ideal. Let F be a finite subset of @@ . Then there
is y € F* such that u(y) = inf{u(a) : a € F}. Let z € F¥. Then x < s, Vs € F“.
Since y € F*, x <y. Thus p(z) > p(y) =inf{u(a) : a € F}. So

u(@) > inf{u(a) : a € F}.

Hence p is an L-fuzzy Frink ideal. O
13
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Theorem 3.46. Let u and 0 be u- L-fuzzy ideals of Q. Then the supremum pV 6
of u and 0 in FIZ(Q) is given by: for all x € Q,
(1 0)(x) = sup{u(a) A O(b) : @ € (a, )"},
Proof. Let o be an L-fuzzy subset of () defined by: for each z € @,
o(x) =sup{p(a) AO(D) : = € (a,b)™}.
We claim ¢ is the smallest L-fuzzy ideal of @) containing U 6. Let x € Q. Then
o(z) = sup{u(a) AO(Ob):x € (a,b)"}
w(z) A 6(0), (since z € (z,0)*)
(@) A1 = p(x).

Thus ¢ O p. Similarly, we can show o D 0. So o D pU 6.
Let a,b € Q and x € (a,b)". Then

a(a)Ao(d) = sup{u(c) AO(d):a € (c,d)"}
= sup{p(c) AB(d) A p(e) NO(F) s a € (e,d)" b e (e, )"}

sup{pu(c) A O(d) A p(e) NO(f) : a,b € (¢, dye, )™}
= sup{u(c) A u(e) AO(d) AO(f) s ab € (c,de, )"}
Since p and 0 are u-L-fuzzy ideals, for each c,e and d, f, there are r € (¢,e)* and
s € (d, f)* such that u(r) = p(c) A p(e) and 6(s) = 6(d) A G(f). Since r € (c,e)*
and s € (d, f)*, {c,d,e, f}* C {s,7}*. Thus a,b € {s,7}*". So (a,b)" C {s,r}"
and thus = € {s,r}"!. Hence for all z € (a,b)",

o(a) Ao(b) < sup{u(r) AO(s) : z € (r,s)"} < o(z).

Therefore ¢ is an L-fuzzy ideal.

Let ¢ be any L-fuzzy ideal of @) such that p U@ C ¢. Then for any x € @, we
have

Y

Asup{u(e) AO(f) : b€ (e, £}

IN

o(f
o(f
0(f)

o(x) = sup{u(a) AO(D):z € (a,b)"'}
< sup{p(a) A B(b) : = € (a,b)"}
< ¢().
Thus 0 C ¢. So 0 = (nU O] = pV 6. Hence o is the supremum of p and 0 in
FI(Q). O

Now we complete this paper by introducing the following definition which gener-
alize all the L-fuzzy ideals of a poset introduced above.

Definition 3.47. An L- fuzzy subset p of @ is an L- fuzzy m-ideal, if it satisfies
the following conditions:

(i) u(0) = 1,

(ii) for any subset A of @ of cardinality strictly less than m, we have u(x) >
inf{u(a) : a € A}, Vo € A%, where m is any cardinal.

Remark 3.48. Note that the L- fuzzy {2-ideals are nothing but the L-fuzzy closed
ideal, the L- fuzzy w-ideals are nothing but the L-Fuzzy Frink-ideals, the L- fuzzy
3-ideals are nothing but the L- fuzzy ideals and the L-fuzzy 2-ideals are nothing but
the L-fuzzy semi-ideals.

14
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